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Abstract We present a mesh optimization algorithm for

adaptively improving the finite element interpolation of a

function of interest. The algorithm minimizes an objective

function by swapping edges and moving nodes. Numerical

experiments are performed on model problems. The results

illustrate that the mesh optimization algorithm can reduce

the W1,? semi-norm of the interpolation error. For these

examples, the L2, L?, and H1 norms decreased also.

1 Introduction

Engineering applications often involve solutions with dif-

ferent scales of variations along different directions. For

these problems, recent works have illustrated the impor-

tance of anisotropic mesh adaptation, see [18, 21, 25] and

the references therein. Courty et al. [12] show that meshes

aligned with the solution characteristics allow to capture

the solution details with fewer nodes than isotropic meshes.

When using anisotropic meshes, they observe second-order

convergence with respect to the number of degrees of

freedom for representing a step function with continuous

linear finite elements.

Several techniques exist for anisotropic mesh adapta-

tion. Remeshing approaches define an anisotropic metric

map that governs the generation of a new anisotropic mesh

[1, 12, 18, 21]. Mesh modification techniques (refinement,

coarsening, edge swapping, and node movement) operate

locally to adapt the mesh [14, 25]. The approach followed

in this paper is mesh optimization via edge swapping and

node smoothing guided by the minimization of an appro-

priate objective function.

We can distinguish the objective functions available in

the literature into two major categories. In the first category,

the objective functions rely on a variational formulation or a

governing partial differential equation. Examples of such

objective functions include the energy functional [15, 22,

28] and the least-squares norm of residuals [27, 29, 31]. For

these examples, the exact solution minimizes the objective

function. The functional provides a natural criterion for the

design of computational grids adapted to this solution via

node movement and edge swapping. In the second category,

the objective functions rely on recovery of derivatives of the

function of interest u. This second category is more func-

tion-centric and does not depend on the problem origin

(variational formulation or partial differential equation).

Typically, the objective function exploits an approximation

to the Hessian matrix of u. Examples of such objective

functions include geometric quality functionals in a trans-

formed space [8, 14, 25] (where the metric map is built on

the Hessian matrix of u) and functionals based on local

interpolation errors [3, 6, 11, 23].

We choose here to focus on an Hessian-based objective

function. Defining an optimization problem independent

from a particular engineering application enables the

development of a black box mesh optimization algorithm

that can impact many different simulation groups and

packages. Such a strategy has been implemented
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successfully in the Mesquite mesh optimization library

[24]. Currently, though, Mesquite does not include an

algorithm to adapt a mesh to the physical solution in an

engineering simulation. The present work is a stepping-

stone toward filling this gap.

Several mesh smoothing schemes have been designed to

reduce the interpolation error. These works differ on how

to measure the interpolation error. When measuring the

interpolation error in the L2 norm, the optimization [3, 8,

10, 11, 14, 25] aims to equidistribute the edge length under

some metric map related to the Hessian matrix of the

approximated function. Additional geometric criteria must

be used in conjunction with the edge length criterion,

otherwise inverted elements or sliver tetrahedra may

appear. The approach is efficient at reducing the L2 norm of

the error. For many engineering applications, a good rep-

resentation of the solution gradient is as important as a

good representation of the solution itself. Unfortunately, a

mesh optimized for reducing the L2 norm of the interpo-

lation error may be inappropriate for representing the

gradient of the solution. Long thin elements are good for

linear approximation if we measure the error in the L2 norm

[11, 26]. But such elements can be undesirable when we

look for a good representation of the solution gradient (see

[4]). Bank and Smith [6] (node movement) and Lagüe [23]

(edge swapping and node movement) introduced two mesh

optimization algorithms to minimize the H1 norm of the

interpolation error. Their objective functions incorporate

naturally a ‘‘barrier’’ term, which helps prevent elements

from becoming degenerate or tangled. To the best of our

knowledge, these two works are the only ones optimizing

for the gradient of the interpolation error.

Other choices of norms are possible. For example, one

might consider constructing an objective function based on

the L?-norm in order to reduce point-wise the interpolation

error of some physical quantity of interest. Reducing the

L?-norm of the error does not always guarantee a decrease

in the error as measured by the Lp-norms (p finite), but it

provides an upper bound for these error norms when the

function of interest is smooth. A similar remark holds for

the W1,? and W1,p norms. By reducing the W1,?-norm, we

control point values of the error and its gradient. This

control can provide an upper bound for the W1,p-norms,

like the H1-norm (H1 = W1,2). Since engineering problems

are often interested in a good representation of the solution

gradient at a point, we here construct an objective function

that can lead to a reduction of the W1,? semi-norm of the

interpolation error.

To the best of our knowledge, no work has studied the

max-norm for the gradient of the interpolation error. The

goal of this paper is to fill this gap and to assess numerically

whether local mesh modification techniques can reduce the

W1,? semi-norm of the linear interpolation error. In Sect. 2,

we motivate and derive the adaptation algorithm. Starting

from the objective function of Bank and Smith [6], we will

present a new algorithm targeting the W1,? semi-norm of

the interpolation error. In Sect. 3, we study on model

problems the capability of this algorithm to reduce the

interpolation error measured in the L2, L?, H1, and W1,?

norms. Throughout the paper, by mesh optimization, we

mean a combination of edge swapping and node movement.

2 Optimization-based adaptation algorithm

In this section, we describe our approach. The focus of this

paper is on two-dimensional triangular meshes because

they are an important stepping stone toward a practical

algorithm. For other meshes (quadrilateral, tetrahedral,...),

the method may apply but important details would need to

be worked out, like swapping for tetrahedral elements. In

our study, we do not incorporate h-adaptivity via refining

or coarsening elements. Several works have illustrated the

importance of combining h-adaptivity with mesh smooth-

ing to generate adaptively anisotropic meshes (see [6, 12,

25]). In general, h-adaptivity and mesh smoothing are

applied sequentially or in a black-box mode. We think that

our algorithm could be plugged into such an approach.

Most likely, some work would be required in order to get

these approaches to play nicely together.

Consider a domain X in R
2 and a family F of con-

forming triangulations for X with fixed number of vertices.

Members of F differ by the positions of the vertices in the

mesh and, possibly, a finite number of edge flips. Given a

function u [ H1(X), we introduce the following optimi-

zation problem

min
T 2F

X

K2T

l21 þ l2
2 þ l2

3

192jKj2
sðj~HK j þ eI;KÞ ð1Þ

where l1, l2, and l3 are the edge lengths of triangle K and |K|

is the area. ~HK is a symmetric matrix approximating the

Hessian matrix of u over the triangle K. The function s(H,

K) is defined by

sðH;KÞ ¼ ðl2
1tT

1 Ht1Þ2 þ ðl2
2tT

2 Ht2Þ2 þ ðl23tT
3 Ht3Þ2: ð2Þ

ti is a unit tangent vector for edge i and li is the length of

the same edge.

Section 2.1 motivates the optimization problem (1) and

derives the associated objective function. Section 2.2

describes the edge swapping and node smoothing algorithms.

2.1 New optimization problem

To motivate optimization problem (1), we will explain in

this section how the objective function is related to the

W1,? semi-norm of the interpolation error, why the
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absolute value of ~HK and the regularization parameter e are

necessary for robustness, and how the Hessian approxi-

mation ~HK is defined.

2.1.1 Relation with the W1,? semi-norm

Given a domain X in R
2 and a function u 2 H1ðXÞ, Bank

and Smith [6] introduced an optimization of node locations

to compute approximately

min
T 2F

Z

X

ru�ruLj j2dX; ð3Þ

uL denotes the continuous piecewise linear nodal interpo-

lant of u defined on the triangulation T .

Since problem (3) is expensive to solve, Bank and Smith

[6] considered

min
T 2F

Z

X

ruQ �ruL

�� ��2dX; ð4Þ

where uQ denotes the quadratic interpolant of u on K. They

showed that

Z

K

ruQ�ruL

�� ��2dK¼
l21tT

1 HKt1

l22tT
2 HKt2

l23tT
3 HKt3

0
@

1
A

T

M
l21tT

1 HKt1

l22tT
2 HKt2

l23tT
3 HKt3

0
@

1
A ð5Þ

where M is a symmetric positive definite matrix depending

only on the geometry of K (see [6, p. 985] for the

expression of M). HK is the Hessian matrix for the qua-

dratic interpolant uQ.

After approximating M with its diagonal, Bank and

Smith write
Z

K

ruQ �ruL

�� ��2dK � l21 þ l2
2 þ l2

3

192jKj sðHK ;KÞ; ð6Þ

where the function s(HK, K) is defined by (2). Their

objective function approximates the squared H1 semi-norm

for the linear interpolation error in X,

X

K2T

l2
1 þ l2

2 þ l23
192jKj sðHK ;KÞ �

Z

X

ruQ �ruL

�� ��2dX

�
Z

X

ru�ruLj j2dX: ð7Þ

In objective function (7), the factor

l2
1 þ l22 þ l2

3

jKj

is proportional to a well-known triangle quality metric [16].

It acts as a ‘‘barrier’’ function that guarantees untangled

elements provided the initial mesh is untangled. Bank and

Smith [6] combine a few sweeps of mesh smoothing with

refinement and coarsening. They do not include edge

swapping. Numerical experiments by Bank and Xu [7]

illustrate reductions for the L2 and H1 interpolation error

norms. However, they do not study the point-wise

maximum norm. It is conceivable that the H1-norm of

the interpolation error decreases while the W1,?-norm

increases. We notice that

max
x2K
ruðxÞ � ruLðxÞj j2� 1

jKj

Z

K

ru�ruLj j2dX

when u 2 H1ðXÞ \W1;1ðXÞ and the mesh is fine enough.

After exploiting the result of Bank and Smith (6), we define

the local adaptive quality metric l by

lðKÞ ¼ l2
1 þ l2

2 þ l23
192jKj2

sðHK ;KÞ � max
x2K
ruQðxÞ � ruLðxÞ
�� ��2:

ð8Þ

l(K) differs from (6) only in that the power of |K| is two

instead of one. The first term in l(K) still acts as a

‘‘barrier’’ function, but it is no longer a triangle shape-

metric since it is not scale-invariant. A different but related

approach to derive objective functions is used in [20],

where we construct objective functions from upper bounds

for the interpolation error. The max-norm for the gradient

of interpolation error satisfies

max
x
ruðxÞ � ruLðxÞj j2� lðKÞ ð9Þ

In the next section, we introduce the absolute value of HK

and a regularization to improve robustness and conver-

gence of the optimization algorithm.

2.1.2 Regularization for robustness

Bank and Smith did not prove that their objective function

(7) is convex or has a unique minimum. To study the

convexity of l(K), we plot level curves for l. In Fig. 1, the

triangle K is composed of two fixed vertices at (0,0) and at

(1,0) and a free vertex at (x, y). Two different choices of

matrix HK are presented. When the free vertex gets closer

Fig. 1 Contour lines with HK = diag(1, 1) (left) and HK = diag(1,

- 1) (right)
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to the horizontal axis, l(K) increases highlighting the

effect of the barrier function. The choice of matrix HK

modifies the level curves of l. When HK has both positive

and negative eigenvalues, the contour lines are not convex

and, consequently, the function l is not a convex function.

On the other hand, when the matrix HK is positive definite,

the contour lines are convex.

In Fig. 2, showing contour lines for a local patch of

elements, the interior node is free while the corner nodes

are fixed. The plotted isolines are for

max
K1;K2;K3;K4

lðKÞ; ð10Þ

when the interior node moves in the rectangle. The

matrices vary per element such that

HK2
¼HK4

¼ 1 0

0 �3

� �
and HK1

¼HK3
¼ 10�2HK2

: ð11Þ

The isolines are not convex.

Convexity of the objective function is fundamental in

optimization. If the optimization algorithm converges to a

stationary point of a convex objective function, then the

algorithm has converged to a global minimizer. When the

matrix HK has positive and negative eigenvalues, the func-

tion l is not always convex. So we prefer to replace the

matrix HK with its absolute value and introduce the function

~lðKÞ ¼ l2
1 þ l2

2 þ l23

192jKj2
ðl2

1tT
1 jHK jt1Þ2 þ ðl2

2tT
2 jHK jt2Þ2

h

þðl2
3tT

3 jHK jt3Þ2
i
: ð12Þ

jHK j is the absolute value of the matrix HK, defined as

jHK j ¼ SjKjST where ðS;KÞ are the eigenpairs for the matrix

HK and jKj is a diagonal matrix with the absolute values of

eigenvalues as diagonal entries. For every vector t, we have

tTHKt
� �2� tTjHK jt

� �2
:

So the function ~l is an upper bound for the local quality

metric l. Asymptotically, the function ~l is also an upper

bound for the max-norm of the gradient of the interpolation

error. We were not able to prove that the function ~l is

convex. But our experiments gave convex level curves for

this function. For example, with the matrices HK defined in

(11), the isolines for the functional

max
K1;K2;K3;K4

~lðKÞ; ð13Þ

are convex (see Fig. 3).

Even though ~l formally has a ‘‘barrier’’, the ‘‘barrier’’

term can become very weak when the matrix jHK j
approaches zero. The function ~l satisfies

0� ~lðKÞ� kHKk2
2

l2
1 þ l2

2 þ l23
192jKj2

l41 þ l42 þ l4
3

� �
:

When the matrix HK is exactly zero in a mesh region, the

‘‘barrier’’ term is canceled for the elements in that region.

Then degenerate elements or elements of infinite size may

appear where the function u is linear. When the matrix HK

has a small norm, i.e. when the function u is almost linear, the

‘‘barrier’’ term will prevent inverted elements. But a small

norm for HK can postpone the impact of the barrier function,

i.e. the function ~l can remain small even when the element K

becomes flat.

To minimize the interpolation error, the aspect ratio of a

triangle aligned with a function u must depend on the

condition number of the Hessian matrix, i.e. the ratio of

largest over smallest eigenvalues (see [9, 13, 26]). A con-

dition number of 1 will result in an equilateral triangle. A

large condition number will result in a stretched triangle.

To control the level of anisotropy in the optimized mesh,

we modify ~l and introduce the function ~le,

~leðKÞ ¼
l21 þ l2

2 þ l2
3

192jKj2
sðjHK j þ eI;KÞ ð14Þ

or

~leðKÞ ¼
l21 þ l2

2 þ l2
3

192jKj2
ðl21tT

1 ðjHK j þ eIÞt1Þ2
h

þðl22tT
2 ðjHK j þ eIÞt2Þ2 þ ðl2

3tT
3 ðjHK j þ eIÞt3Þ2

i
:

This regularization controls the level of anisotropy in the

optimized mesh because it sets an upper bound on the

condition number of jHK j þ eI,

kmaxðjHK jþ eIÞ
kminðjHK jþ eIÞ ¼

kmaxðjHK jÞþ e
kminðjHK jÞþ e

�1þkmaxðjHK jÞ
e

: ð15Þ

This upper bound on the condition number will limit the

aspect ratios for triangles in the optimized mesh.

Fig. 2 Contour lines on a patch

of four elements

Fig. 3 Contour lines for functional (13) on a patch of four elements
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The max-norm for the gradient of interpolation error and

the function ~le satisfy

max
x
ruðxÞ � ruLðxÞj j2� lðKÞ� ~leðKÞ: ð16Þ

We could compute approximately

min
T 2F

max
K2T

~leðKÞ¼min
T 2F

max
K2T

l2
1þ l22þ l2

3

192jKj2
sðjHK jþ eI;KÞ ð17Þ

via edge swapping and node movement in order to reduce

the interpolation error. Problem (17) is a non-smooth

optimization problem because the max-value function is

non-differentiable. Such a problem requires special-

purpose algorithms (see, e.g., Fletcher [17]). Here, we

prefer to look for a cheap optimization that reduces the

overall error. So we replace problem (16) by the following

optimization problem

min
T 2F

X

K2T

l21 þ l2
2 þ l2

3

192jKj2
sðjHK j þ eI;KÞ: ð18Þ

These modifications result in the optimization problem (1).

2.1.3 Approximation ~HK

A key component of the objective function is the matrix
~HK on each element. Note that only the absolute value j~HK j
is needed. So we approximate the absolute value of the

Hessian matrix of u.

The inputs for our mesh optimization algorithm are a

non-inverted initial mesh T ð0Þ and, for every vertex V of

T ð0Þ, a matrix H
ð0Þ
V . Note that the superscript (0) refers to

data defined on the initial mesh. The initial mesh will be

stored as a background mesh for the piecewise linear

interpolation of the absolute value of these nodal matrices,

Pð0ÞðfjHð0ÞV jgV2T ð0Þ Þ. For any point x in element K(0) of the

background mesh T ð0Þ, we choose

Pð0ÞðfjHð0ÞV jgV2T ð0Þ ÞðxÞ ¼ jH
ð0Þ
V1
jkð0ÞV1
ðxÞ þ jHð0ÞV2

jkð0ÞV2
ðxÞ

þ jHð0ÞV3
jkð0ÞV3
ðxÞ; ð19Þ

where the vertices V1, V2, and V3 form the element K(0) and

kð0ÞV ðxÞ denotes the barycentric coordinate of x with respect to

vertex V in element K(0). To evaluate ~le, we set the matrix

j~HK j to be

j~HK j ¼ Pð0ÞðfjHð0ÞV jgV2T ð0Þ ÞðGKÞ; ð20Þ

where GK is the centroid of element K. Given the centroid

GK, we find1 the element K(0) on the background mesh

containing GK. Then we use the interpolation formula (19)

to obtain the matrix j~HK j.

Requiring the matrices H
ð0Þ
V as input of an adaptive

scheme is reasonable. Indeed, HK is the Hessian matrix for

the quadratic interpolant, uQ, of u in element K. As uQ is

usually unknown, the discrete Hessian matrix at vertex V is

recovered from a discrete solution. Several nodal-based

recovery schemes of Hessian matrix from a discrete solu-

tion are available. Discussing such recovery schemes is

outside the scope of this paper. For further details, we refer

to [30] and the references therein.

2.2 Edge swapping and node movement algorithms

In this section, we describe our algorithm to solve

approximately (1). First, we describe our edge swapping

algorithm and, then, the node movement algorithm.

Figure 4 illustrates the swapping of edge e into edge c.

Note that when edge e is flipped, the surrounding elements

Ke,1 and Ke,2 are replaced with the elements Kc,1 and Kc,2.

Let Xe denote the patch surrounding the edge e such that

Xe ¼ Ke;1 [ Ke;2 ¼ Kc;1 [ Kc;2:

Algorithm 1 describes our edge swapping algorithm for

problem (18).

Fig. 4 Illustration of swapping the edge e into the edge c

1 In the numerical experiments, this search is implemented with a

simple loop through the elements of the background mesh.
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The first step is to check that the patch Xe is convex.

When Xe is not convex, the flip would generate inverted

elements, so the algorithm skips the edge. Then we com-

pare the value of the function ~le on all the four elements. If

the maximum and the sum of ~le over the patch both

decrease, then we perform the flipping of edge e into edge

c. When swapping an edge, the value of the objective

function,
P

K2T ~leðKÞ, varies only for the elements in Xe.

So we perform checks on the maximum and the sum only

over the patch Xe. These checks arise from the fact that the

algorithm looks for an approximate solution to problem

(18) and to the original problem (17).

For the node movement algorithm, an iterative Gauss-

Seidel-like method is used where we sweep through the

vertices, locally optimizing the position of a single vertex

while holding all others vertices fixed. Given a vertex V,

let XV be the patch of elements sharing V as a vertex.

Algorithm 2 describes our node movement algorithm for

problem (18).

The first step is to compute the matrices j~HK j for all the

elements K. To reduce computational expenses, these

matrices are kept constant during one whole sweep through

the mesh vertices. To optimize the position of vertex V, we

use the nonlinear conjugate gradient algorithm CG_DES-

CENT [19] on the objective function,
P

K2T ~leðKÞ, viewed

as a function of (xV, yV). Algorithm CG_DESCENT is

stopped when the norm of the gradient of the objective

function has been reduced by a factor 10-6, when the relative

change in objective function is smaller than 10-12, or when

100 iterations have been performed. The barrier term in ~le

will keep vertex V in XV or in the subregion of XV visible

from all points on the boundary of XV (when XV is not con-

vex). Moving a vertex V can affect the values of ~le only for

the elements having V as vertex, i.e. the elements in XV.

Algorithm CG_DESCENT will reduce the value
P

K2XV

~leðKÞ. As the original optimization problem (16) looks at the

maximum value of ~le, we check also the maximum value of

~le on XV. When the movement of vertex V creates an

increase, we do not perform the movement and set vertex V to

its latest position. Finally, we stop sweeping through vertices

when the relative change in objective function is smaller than

a tolerance, tol, or when a maximal number of iterations has

been reached. For boundary vertices, we apply the same

algorithm, but with appropriate constraints to keep the vertex

on the boundary. Several choices are available to combine

the edge swapping and the node smoothing algorithms. In the

following section, we will study on model problems how to

combine these two algorithms.

3 Numerical experiments

In this section, numerical experiments on model problems

are presented to illustrate the mesh optimization algorithm.

The goal is to assess whether the algorithm can reduce the

interpolation error or not. The meshes are adapted to given

analytical functions with different anisotropic features, so

that we can compute exactly the interpolation error. We do

not use a realistic engineering problem because the exact

solution would not be known.

The inputs for the mesh optimization algorithm are a

non-inverted initial mesh and Hessian matrices at the ver-

tices of the initial mesh. The input matrices at the vertices

are computed with the analytical expression of the function

to separate the potential error reduction, due to the mesh

algorithm, from the effect of a Hessian recovery operator.

3.1 Experiments on the regularization parameter

For the first test case, only the node movement algorithm is

used. Based on a scaling argument via (15), the regulari-

zation parameter e is set to

e ¼ r max
V2T 0
kHð0ÞV k2;

where r is a parameter in [0, 1]. We compare numerically

the effect of r on the optimization algorithm. The first

function u is given by

uðx; yÞ ¼ exp �100 x� 1

2

� �2

�100 y� 1

2

� �2
" #

ð21Þ

in the domain X ¼ ð0; 1Þ�ð0; 1Þ. The Gaussian function u

is symmetric, decays rapidly to zero, and exhibits a large

region where it is flat and where the norm kD2uðxÞkF is

small. The function has no anisotropy in it. Figure 5

illustrates the initial uniform structured mesh with 32 ele-

ments per direction and the contour of function (21).
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Table 1 lists the norms of interpolation error on the

initial mesh and after optimization via node movement,

when r varies. The interpolation error norms decrease after

optimization. Except for the L2-norm, the decrease is

almost monotone with r. For the W1,? norm, the reduction

of interpolation error is between 30 and 37%. The other

norms are reduced by at least 50%. Table 1 also lists the

range for condition number of AK. We recall that AK is the

Jacobian matrix for mapping the unit right-angled triangle

to the physical triangle K. The range of the condition

numbers increase when r gets smaller, indicating that some

elements become more anisotropic.

Figure 6 describes the optimized meshes for r = 10-2

and r = 10-4. When kD2uðxÞkF is large, small isotropic

elements are created. In the region where kD2uðxÞkF is

small, the mesh optimization allows flat or stretched ele-

ments as these elements do not increase the interpolation

error.

Function (21) has no anisotropic feature. Therefore,

anisotropic elements are not needed to represent this

function. The optimized meshes contain anisotropic ele-

ments because of the flatness of u, the boundary con-

straints, and the fixed topology. In order to reduce the error,

the optimization gathers nodes in the regions that matter. In

those regions, the mesh is notably isotropic. Elsewhere, the

function is almost linear and anisotropic elements do not

cause the error to increase. The regularization controls here

the degree of anisotropy at the expense of a slight increase

in the error.

3.2 Experiments assessing the effect of the matrix

absolute value

The result (6) does not contain the absolute value of ~HK .

Yet we recommend the use of the absolute value, as this

experiment illustrates.

First, only the node movement algorithm is applied.

Table 2 lists the norms of the interpolation error before and

after optimization (r = 0.0) for the function (21). Except

for the L2 norm, it is seen that optimization with the

absolute value results in slightly smaller error norms and a

smaller range of condition numbers. Figure 7 plots the

optimized meshes for the optimization with matrices ~HK

and j~HK j. For this experiment, the optimized meshes are

not significantly different.

Next, the node smoothing algorithm is followed by edge

swapping and an additional node smoothing. Table 3 lists

the norms of interpolation error on the initial mesh and

after optimization (with r = 0.0). The interpolation error

norms decrease after optimization. Except for the W1,?

norm, the optimization with ~HK reduces more than the

optimization with j~HK j. Figure 8 describes the optimized

meshes for the optimization with matrices ~HK and j~HK j. In

the region, where kD2uðxÞkF is small, the optimized

meshes differ. The optimized mesh with ~HK is not as

smooth as the other optimized mesh.

Except for the mesh smoothness, these examples do not

illustrate a dramatic difference when the absolute value is

applied to ~HK and when the matrix ~HK is indefinite.

Fig. 5 Initial structured mesh

(left)—Contour for function

(20) (right)

Table 1 Evolution of interpolation error for function (21) as a function of r

ku� uLkL2 ku� uLkH1 ku� uLkL1 ku� uLkW1;1 kAKkFkA�1
K kF

Initial 3.28 9 10-3 3.52 9 10-1 3.80 9 10-2 2.40 [2, 3]

r = 10-2 0.80 9 10-3 1.57 9 10-1 1.24 9 10-2 1.67 [2, 10]

r = 10-4 1.63 9 10-3 1.43 9 10-1 1.01 9 10-2 1.53 [2, 69]

r = 10-8 1.52 9 10-3 1.42 9 10-1 0.98 9 10-2 1.51 [2, 560]

r = 0.0 1.52 9 10-3 1.43 9 10-1 1.00 9 10-2 1.52 [2, 567]
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However, the metric l (8), with the matrices ~HK without

absolute value, can have non-convex isolines and be non-

convex, as was illustrated in Fig. 2. In that case, the mesh

optimization may not converge to a global minimizer. It is

conceivable that a more challenging example would result

in significant differences. When the matrix ~HK is indefinite,

adding e I does not prevent any singularity. If a control of

the level of anisotropy in the optimized mesh is important,

a different regularization scheme would be needed. Based

on these remarks, we prefer to use the metric ~le (14), with

the absolute value and the regularization.

3.3 Experiments on combining swapping

and smoothing

For the next series of tests, we combine edge swapping and

node smoothing and compare numerically different com-

binations for the mesh optimization algorithm. In the fol-

lowing, the letter E denotes one call to Algorithm 1 and the

letter N one call to Algorithm 2.

Table 4 lists the interpolation error norms with different

combinations of edge swapping and node movement for

function (21). r is set at 10-2. All the interpolation error

norms decrease after optimization. The combination

(N, (E, N)3) gives the smallest error norms. The W1,? norm

is reduced by 40%, the H1 norm by 65%, the L2 norm by

83%, and the L? norm by 77%. The W1,? error in Table 1

corresponding to Fig. 6 (right) is nearly the same as the

error in Table 4 corresponding to Fig. 9 (left). Therefore,

one can achieve the same error level with a lot less mesh

anisotropy by adding the ability to swap edges to the

adaptive algorithm.

Figure 9 plots the optimized meshes for the Gaussian

function (21) with the combinations (N, E, N) and (E, N).

The meshes are visually different from the optimized mesh

with node movement only (see Fig. 6). For this function

and this initial mesh, starting with edge swapping creates a

mesh topology that prevents outer vertices to gather in the

middle of the mesh. This behavior limits the error reduc-

tion in comparison to combinations starting with node

movement.

In the subsequent experiments, we use a heuristic for-

mula to set the regularization parameter e. We choose e to

be

e ¼ r0 max
V2T 0

H
ð0Þ
V

���
���

2
and

r0 ¼ 1

100 maxK02T 0 kAK0kFkA�1
K0 kF

:

In this formula, the constant r0 depends only on the initial

mesh T 0.

The next function, from Huang [21], is given by

uðx; yÞ ¼ tanhð24yÞ � tanh 24 x� y� 1

2

� �� �
ð23Þ

in the domain X = (0, 1) 9 (0, 1). This function simulates

the interaction of a boundary layer (along the line y = 0)

with an oblique shock wave (along the line y = x - 1/2).

Figure 10 illustrates the initial unstructured mesh with

1002 vertices and 2006 elements and the surface defined by

function (23). Based on (22), this initial mesh results in r0

to be 1/420.

Table 5 lists the interpolation error norms on the opti-

mized mesh with different combinations of edge swapping

Fig. 6 Optimized meshes for (21) with r = 10-2 (left) and r = 10-4

(right)

Table 2 Effect of absolute value on optimization via node smoothing for (21) with r = 0.0

ku� uLkL2 ku� uLkH1 ku� uLkL1 ku� uLkW1;1 kAKkFkA�1
K kF

Initial 3.28 9 10-3 3.52 9 10-1 3.80 9 10-2 2.40 [2, 3]

jHK j 1.52 9 10-3 1.43 9 10-1 1.00 9 10-2 1.52 [2, 567]

HK 1.32 9 10-3 1.49 9 10-1 1.03 9 10-2 1.56 [2, 746]

Fig. 7 Optimized meshes, via node smoothing, for (21) with jHK j
(left) and HK (right)
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and node smoothing. All the interpolation error norms

decrease with more levels of optimization. Combining edge

swapping and node movement results in smaller error norms

than using only the edge swapping or only the node move-

ment. Combinations starting with node movement produce

larger reduction in error norms than the ones starting with

edge swapping. After the combinations (N, E, N) and (E, N),

adding more cycles of edge swapping and node smoothing

does not reduce significantly the interpolation error. To

understand this relative reduction in the error decrease,

Table 6 presents the number of edge swaps with the different

E cycles. The different E cycles produce less and less edge

swaps which explain the relative reduction in the error

decrease when more cycles are added.

The combination (N, E, N) reduces the W1,? norm by

37% and the other norms by at least 63%. It reduces the error

more than the combination (E, N) and exhibits a larger

condition number range, indicating that anisotropic elements

help reducing the error. Figure 11 illustrates the optimized

meshes for the combinations (N, E, N) and (E, N). Starting

with edge swapping creates a mesh topology that prevents

vertices to gather along the anisotropic features of function

(23).

Finally, we study the function from [2]

uðx; yÞ ¼ sin 5ð2x� 1:2Þ3ð4y2 � 6yþ 3Þ
h i

: ð24Þ

The initial mesh was generated by the code BAMG of Hecht

[5] and it is pre-adapted to function (24) so that the relative

L?-norm of the interpolation error is smaller than 5 %. The

mesh contains 3,173 vertices and 5,962 elements. Based on

(22), this initial mesh results in r0 to be 1/73,520. The value of

r0 is smaller because the pre-adapted initial mesh contains

stretched elements. Figure 12 illustrates the initial pre-adap-

ted mesh and the contour for function (24). Table 7 lists the

interpolation error norms on the optimized mesh with differ-

ent combinations of edge swapping and node smoothing. All

the interpolation error norms decrease after optimization. For

Table 3 Effect of absolute value on optimization via node smoothing, edge swapping, and node smoothing for (21)

ku� uLkL2 ku� uLkH1 ku� uLkL1 ku� uLkW1;1 kAKkFkA�1
K kF

Initial 3.28 9 10-3 3.52 9 10-1 3.80 9 10-2 2.40 [2, 3]

jHK j 2.91 9 10-3 1.64 9 10-1 1.53 9 10-2 1.50 [2, 567]

HK 1.96 9 10-3 1.42 9 10-1 1.19 9 10-2 1.72 [2, 658]

Fig. 8 Optimized meshes for (20) via node smoothing, edge

swapping, and node smoothing with j~HK j (left) and ~HK (right)

Table 4 Evolution of interpolation error for function (21) with r = 10-2

ku� uLkL2 ku� uLkH1 ku� uLkL1 ku� uLkW1;1 kAKkFkA�1
K kF

Initial 3.28 9 10-3 3.52 9 10-1 3.80 9 10-2 2.40 [2, 3]

N 0.804 9 10-3 1.57 9 10-1 1.24 9 10-2 1.67 [2, 10]

(N, E, N) 0.702 9 10-3 1.36 9 10-1 0.986 9 10-2 1.51 [2, 8.1]

(N, (E, N)2) 0.599 9 10-3 1.27 9 10-1 0.912 9 10-2 1.45 [2, 8.1]

(N, (E, N)3) 0.538 9 10-3 1.23 9 10-1 0.876 9 10-2 1.43 [2, 8.2]

E 2.71 9 10-3 2.98 9 10-1 3.79 9 10-2 2.40 [2, 3]

(E, N) 1.57 9 10-3 2.37 9 10-1 2.23 9 10-2 2.16 [2, 5]

(E, N)2 1.57 9 10-3 2.37 9 10-1 2.23 9 10-2 2.16 [2, 5]

(E, N)3 1.57 9 10-3 2.37 9 10-1 2.23 9 10-2 2.16 [2, 5]

Fig. 9 Optimized meshes for (21) with (N, E, N) (left) and (E, N)

(right)
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this function and this initial mesh, the H1 and W1,? norms are

more reduced when the mesh optimization starts with node

movement. For the L2 and L? norms, it is better to start with

edge swapping. The combination (N, E, N) decreases the

W1,? norm by 53% and the other norms by at least 19%. The

combination (E, N) reduces the W1,? norm by 45% and the

other norms by at least 21%. In comparison with the previous

experiments, it is notable that even when the initial mesh is

pre-adapted, our algorithm can still make worthwhile reduc-

tions in the error. Figure 13 plots the optimized meshes for the

combinations (N, E, N) and (E, N).

Based on these experiments, we can draw the following

conclusions. Combining edge swapping and node move-

ment results in smaller error norms than using only the

edge swapping or only the node movement. The edge

swapping should be followed by node smoothing to benefit

from the topology changes. When the initial mesh is not

pre-adapted, it seems important to move the nodes before

swapping any edge. The combination (N, E, N) is usually a

good combination.

3.4 Experiment: interpolation error can increase

with adaptation

This experiment illustrates that the algorithm does not

guarantee that all the error norms decrease with adaptation.

Only the node movement algorithm, with the regularization

parameter e set to 0, is used in this experiment. Let u be

Fig. 10 Initial unstructured

mesh (left)—Contour surface

for function (22) (right)

Table 5 Evolution of interpolation error for function (23) for r0 = 1/420

ku� uLkL2 ku� uLkH1 ku� uLkL1 ku� uLkW1;1 kAK FkA�1
K F

Initial 1.72 9 10-2 1.74 1.75 9 10-1 15.17 [2, 4.2]

N 0.655 9 10-2 0.755 0.575 9 10-1 9.56 [2, 28.0]

(N, E, N) 0.471 9 10-2 0.628 0.575 9 10-1 9.56 [2, 28.5]

(N, (E, N)2) 0.467 9 10-2 0.620 0.575 9 10-1 9.56 [2, 28.4]

(N, (E, N)3) 0.459 9 10-2 0.619 0.575 9 10-1 9.56 [2, 28.1]

E 0.933 9 10-2 1.11 1.48 9 10-1 15.17 [2, 23.4]

(E, N) 0.538 9 10-2 0.78 0.902 9 10-1 11.37 [2, 18.0]

(E, N)2 0.525 9 10-2 0.762 0.902 9 10-1 11.37 [2, 23.2]

(E, N)3 0.524 9 10-2 0.759 0.902 9 10-1 11.37 [2, 24.7]

Table 6 Number of edge swaps for function (23) and r0 = 1/420

(N, E, N) (N, (E, N)2) (N, (E, N)3) (E, N) (E, N)2 (E, N)3

Edge

swaps

372 372, 46 372, 46, 15 288 288, 98 288, 98, 30

Fig. 11 Optimized meshes for (23) with (N, E, N) (left) and (E, N)

(right)
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uðx; yÞ ¼ exp � x� 1

2

� �2

� y� 1

2

� �2
" #

ð25Þ

in the domain X = (0, 1) 9 (0, 1). Figure 14 illustrates the

initial uniform structured mesh with 32 elements per direc-

tion and the contour of function (25). Figure 15 describes the

optimized mesh with the increase check over XV.

Table 8 lists the norms of interpolation error on the

initial mesh and after optimization via node movement.

The L? and W1,? norms of interpolation error increase

after optimization while the other two norms decrease. We

recall that Algorithm 2 checks for an increase of ~le over

XV. This check does not guarantee that the norms will

never increase because the function ~le is only asymptoti-

cally an upper bound for the W1,? semi-norm.

4 Conclusion

An optimization-based mesh adaptation algorithm has been

presented. It combines edge swapping and node movement

to minimize an objective function. The mesh adaptation

algorithm exploits information from a discrete Hessian

matrix. The objective function is based on the Bank and

Smith [6] formula for the H1 semi-norm of the linear

interpolation error. In this formula, we replace the Hessian

matrix for the quadratic interpolant of the function of

interest u with a symmetric definite positive approximation.

The objective function contains naturally a ‘‘barrier’’ term

to ensure that starting from a mesh without inverted ele-

ments, the resulting mesh will not contain any inverted

elements.

On model problems, we illustrated numerically that the

algorithm can diminish the W1,? semi-norm of the

Fig. 12 Initial mesh

pre-adapted for (23) (left)—
Contour surface for (23) (right)

Table 7 Evolution of interpolation error for function (24) for r0 = 1/73520

ku� uLkL2 ku� uLkH1 ku� uLkL1 ku� uLkW1;1 kAKkFkA�1
K kF

Initial 6.15 9 10-3 1.67 3.85 9 10-2 31.73 [2, 735.2]

N 5.19 9 10-3 1.29 3.05 9 10-2 17.49 [2, 430]

(N, E, N) 4.98 9 10-3 1.04 3.05 9 10-2 14.85 [2, 67.5]

(N, (E, N)2) 4.94 9 10-3 0.99 3.05 9 10-2 14.24 [2, 54.65]

(N, (E, N)3) 4.95 9 10-3 0.982 3.05 9 10-2 14.24 [2, 54.65]

E 5.57 9 10-3 1.31 2.92 9 10-2 22.58 [2, 168]

(E, N) 4.83 9 10-3 1.07 2.22 9 10-2 17.24 [2, 52.8]

(E, N)2 4.67 9 10-3 1.01 2.20 9 10-2 17.24 [2, 61.3]

(E, N)3 4.61 9 10-3 0.99 2.20 9 10-2 17.24 [2, 63.4]

Fig. 13 Optimized meshes for (23) with (N, E, N) (left) and (E, N)

(right)
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interpolation error. This decrease is gratifying because our

objective function is only asymptotically an upper bound to

the W1,? semi-norm of the interpolation error. In our

numerical experiments, the reduction in the W1,? semi-

norm is accompanied by a decrease in the L?, L2, and H1

norms. The amount of decrease is problem-dependent.

However, when the initial mesh is already appropriate to

represent the function of interest, the decrease can be

limited. When the initial mesh is not aligned with the

function, the algorithm computes a better mesh topology

and node distribution to represent the function. Then the

reduction of the error norm can be significant.

A limitation of the algorithm is the lack of guarantee that

all the error norms will always decrease. Without more

knowledge about the function of interest (like a governing

partial differential equation for engineering applications),

we are not aware of any algorithm with such a guarantee. The

focus of this paper is on triangular two-dimensional meshes.

For other situations (quadrilateral element, three-dimen-

sional meshes), we expect that our approach will apply as

well. However, important details remain to be worked out.

Future directions for this work include the coupling with a

recovery operator for the Hessian matrix, an efficient

implementation into the Mesquite library [24], an automatic

and robust selection of the regularization parameter r, and

the extension to multiple dependent variables.
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